tensities and numbers of lattice modes differ between phases. The ordered phase has the simplest spectrum. In the polarization spectra of "disordered" NH₄Br II (300°K and 1 atm), only a few modes are active for all polarizations of the incident light, and the spectrum does not appear to resemble the calculated onephonon density of states [20]. In the polarization spectra of both "disordered" NH4Cl "II" and NH4Br II, the fundamental modes have Raman tensors expected for the ordered state. Many modes (table 1) in NH₄Br II, NH₄Br V and NH₄Cl "II" spectra have intensities comparable to the fundamentals but are only active in the "disordered" phase. The low-frequency modes at 95 cm⁻¹ in NH₄Cl and 56 cm⁻¹ in NH₄Br are believed to be "zone-edge" transverse acoustic modes [14,21,22]. The experimental dispersion curves for NH₄Cl at 78°K [23, 24] and the calculated one for NH₄Br [20] suggest that other modes listed in table 1 are also "zone-edge" modes.

4. Summary

The experimental results described above indicate some of the complexity of the Raman spectra of NH₄Br and NH₄Cl. The results on the polarization characteristics, implied order of NH₄Cl "II", multiple phase transition, and presence of many strong "zoneedge" modes are difficult to explain in the context of present theoretical understanding of crystals with orientational disorder [21, 22, 25]. The results suggest some order even in NH₄Br II, which may be only correlated reorientations. The estimated reorientation rate (10¹¹ sec⁻¹ at 300°K) of the NH₄ ion is much longer than the duration of the Raman excitation process [26, 27]. This can give the appearance of order. Recent diffuse neutron and X-ray studies also indicate the existence of spatial correlation in both NH₄Br and NH₄Cl [28–30]. Diffuse neutron peaks have been found in NH₄Br II at position which become superstructure reflection in NH₄Br III. Correlated displacements of the Br ions in NH4Br II have also been detected in the diffuse X-ray studies. Both the large thermal factors for Br and Cl ion in neutron diffraction study of the "disordered" phase [1-3] and the occurrence of correlated displacement of the Br ion suggest doubling of CsCl-like structure with antiparallel orientations of the adjacent NH₄ ions in

 NH_4Br II, NH_4Br V and NH_4Cl "II". In such a case, zone-edge modes can become allowed zone center modes [31]. The difference between NH_4Br II and V (NH_4Cl "II") might involve the arrangement of the doubled cell, with the arrangement of NH_4Br V involving a smaller amount of H-H repulsion between adjacent NH_4^+ ions.

Acknowledgement

The author is greatly indebted to Dr. Nicol for much encouragement and for the generous use of the high-pressure and Raman equipment. Special thanks are also due to Dr. R.S. Katiyar (University of Southern California) for many valuable discussions and for the computer program employed in calculating the Raman frequencies.

References

- [1] H.A. Levy and S.W. Peterson, Phys. Rev. 86 (1952) 766.
- [2] H.A. Levy and S.W. Peterson, J. Am. Chem. Soc. 75 (1953) 1536.
- [3] H.A. Levy and S.W. Peterson, Phys. Rev. 83 (1951) 1270.
- [4] V. Hovi, Proc. Intern. Conf. Sci. Tech. Non-Metallic Crystals, New Delhi, India (1969) p. 67.
- [5] C.W. Garland and R.A. Young, J. Chem. Phys. 49 (1968) 5282.
- [6] Y. Ebisuzaki, Bull. Am. Phys. Soc. 17 (1972) 314.
- [7] M. Nicol, Y. Ebisuzaki, W.D. Ellenson and A. Karim, Rev. Sci. Instr. 43 (1972) 1368.
- [8] Gmelins Handbuch der Anorganischen Chemie, Syst. Nr. 23 (Verlag Chemie, Berlin, 1936) p. 163.
- [9] V. Hovi and P. Pyykkö, Phys. Kond. Mater. 5 (1966) 1.
- [10] Y. Ebisuzaki and M. Nicol, Chem. Phys. Letters 3 (1969) 480.
- [11] Y. Ebisuzaki, Temperature and pressure induced phase transitions in NH₄Cl and NH₄Br, to be published.
- [12] C.W. Garland and N.W. Schumaker, J. Phys. Chem. Solids 28 (1971) 799.
- [13] L. Couture and J.P. Mathieu, Proc. Indian Acad. Sci. 28A (1948) 401.
- [14] C.H. Wang and P.A. Fleury, in: Light scattering spectra of solids, ed. G.B. Wright (Springer, Berlin, 1968) p. 651.
- [15] R. Loudon, Advan. Phys. 13 (1964) 423.
- [16] P.W. Bridgman, Phys. Rev. 38 (1931) 182.
- [17] C.C. Stephenson and H.E. Adams, J. Chem. Phys. 20 (1952) 1658.
- [18] R. Stevenson, J. Chem. Phys. 34 (1961) 1757.
- [19] P.W. Bridgman, Phys. Rev. 70 (1946) 425.

- [20] J. Govendarajan and T.M. Haridasan, Indian J. Pure Appl. Phys. 8 (1970) 376.
- [21] C.H. Wang and R.B. Wright, J. Chem. Phys. 56 (1972) 2124.
- [22] J.B. Sokoloff, Phys. Rev. B5 (1972) 4962.
- [23] G. Venkataraman and V.C. Sahni, Rev. Mod. Phys. 42 (1970) 409.
- [24] E.R. Cowley, Phys. Rev. B3 (1971) 2743.
- [25] H. Böttger, Phys. Stat. Sol. 49b (1972) 795.

- [26] D.E. Woessner and B.S. Snowden, J. Chem. Phys. 47 (1967) 378.
- [27] E.M. Purcell, Physica 17 (1952) 282.
- [28] R.S. Seymour, Acta Cryst. A27 (1971) 348.
- [29] H. Terauchi, Y. Noda and Y. Yamada, J. Phys. Soc. Japan 32 (1972) 1560.
- [30] D. Renz, K. Breutner and H. Dachs, Solid State Commun. 11 (1972) 879.
- [31] L. Patrick, Phys. Rev. 167C (1968) 809.